

Date: 27/03/2020

Name of Faculty: Ms. Sonal Gupta

Designation: Asst. Professor

Department: Pharmacy

Subject: Physical Pharmacy (BP-403T)

Unit: V

Topic: Drug Stability

"WORKING TOWARDS BEING THE BEST"

INTRODUCTION

STABILITY:

USP defines stability of pharmaceutical product as, "extent to which a product retains with in specified limits and throughout its period of storage and use (i.e. shelf life).

The capacity or the capability of a particular formulation in a specific container to remain with in particular chemical , microbiological , therapeutically , and toxicological specifications.

DRUG STABILITY

Drug stability is defined as the ability of the pharmaceutical dosage form to maintain the physical, chemical, therapeutic and microbial properties during the time of storage and usage by the patient.

The purpose of stability studies is to provide evidence on how the quality of the active substance or pharmaceutical product varies with time under the influence of a variety of environmental factor such as temperature, humidity and light

IMPORTANCE

Chemical and physical degradation of drug substances may change their pharmacological effects, which is then affecting on their therapeutic and toxicological effect.

Pharmaceuticals products are used **therapeutically** based on their **efficacy and safety**, they should be stable.

Maintenance of quality until the time of usage or until their expiration date.

The **quality** should be **maintained** under the various conditions that pharmaceuticals encounter, during production, storage in warehouses, transportation and storage in hospitals as well as in the home.

19/11/2016

NEED

Where stability studies takes place......

Drug discovery development

New chemical entity

Preclinical studies including:

- chemistry
- Physical properties
- Biological
- Pharmacology
- ii. ADME
- iii. Toxicology
- Preformulation
- Bulk characterization
- ii. STABILITY ANALYSIS
- iii. Solubility analysis

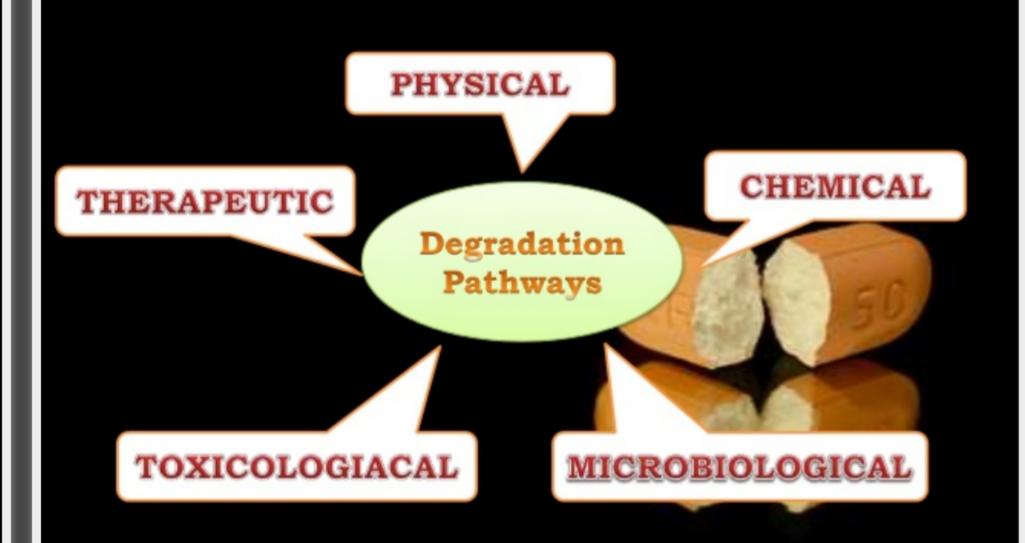
Clinical studies

Types of stability

TYPES OF STABILITY TESTING

SR. NO	STUDY	STORAGE CONDITION	TESTING TIMING (MONTH)	Minimum Time Period Covered By Data At Submission
1	LONG TERM (Ambient)	25° C ± 2° C 60%RH ± 5%	0, 3, 6, 9, 12, 18, 24, 36, 48, 60.	12 months
2	INTERMEDIATE (controlled)	30° C ± 2° C 60%RH ± 5%	0, 3, 6, 9, 12.	6 months
3	ACCELERATED (Short term)	40° C ± 2° C 75%RH ± 5%	0,1, 2, 3, 6, 9.	6 months

DEGRADATION PATHWAYS


Degradation of active drug leads to **lowering of quantity** of the **therapeutic agent** in the dosage form

A **toxic product formation** may takes place due to decomposition instability of drug product can lead to a decrease in its **BIOAVAILABILITY**.

Changes in **PHYSICAL APPEARANCE** of given dosage form may takes place.

Degradation may increase or decrease the **POTENCY** of drug.

TYPES OF DEGRADATION PATHWAYS

PHYSICAL DEGRADATION

LOSS OF VOLATILE COMPOUNDS

LOSS OF WATER

ABSORPTION OF WATER

CRYSTAL GROWTH

POLYMORPHISMS

COLOUR CHANGES

PHOTOLYSIS

CHEMICAL DEGRADATION

HYDROLYSIS

ISOMERIZATION

RACEMIZATION

EPIMERIZATION

DECARBOXYLATION

ELIMINATION

OXIDATION

MICROBIAL DEGRADATION

Contamination of a product may sometimes cause a lot of damage and sometimes may not be anything at all.

- -Thus it is dependent on the type of microbe and its level of toxicity it may produces.
- -If parenterals or ophthalmic formulations are contaminated, it may cause serious harm.

Water & air

Source of microbial contamination

Raw material Container & closure

THERAPEUTIC DEGRADATION

Therapeutic effect must be changed due to hydrolysis, isomerisation or epimerization.

Example:

Adrenaline

Toxicological degradation

SOME DRUGS MAY PRODUCE TOXIC PRODUCT.

EXAMPLE:

TETRACYCLINE, CHLORAMPHENICOL