
LNCT GROUP OF COLLEGES

Name of Faculty: Dr Anoop Kumar Chaturvedi

Designation: Associate Professor

Department: CSE

Subject: Operating (MCA-201)

Unit: III

Topic: Deadlock

LNCT GROUP OF COLLEGES

Deadlock in Operating System:

Deadlock is a situation where a set of processes are blocked because each process is holding a

resource and waiting for another resource acquired by some other process.

Or in other words

A process in a multiprogramming system is said to be in a state of deadlock if its waiting for

a particular event that will never occur.

One Process Deadlock:

If a process is given the task of waiting for an event to occur, and if the system includes no

provision for signalling that event, then we have a one-process deadlock. Deadlock of this

nature are extremely difficult to detect.

Process :

A process is an instance of a program running in a computer.

Resource :

Resources are the physical or virtual components of limited availability within a computer

system. Every device connected to a computer system is a resource. Every internal system

component is a resource. Virtual system resources include files, network connections and

memory areas.

A process in operating systems uses different resources and uses resources in following way.

1) Requests a resource

2) Use the resource

2) Releases the resource

Example of deadlock:

1. A traffic deadlock:

A number of automobiles are attempting to drive through a busy section of the city, but

traffic has becomes completely snarled. Traffic comes to a halt.

LNCT GROUP OF COLLEGES

Traffic Deadlock

2. Assume a system with four tape drives and two processes. If each process has 2 tape

drives and needs a third one in order to proceed, then each will wait for the other and

processes are is in deadlocked.

3. Deadlock can occur if: Person starts to cross river without first checking to see if

someone else is trying to cross from the other side in the opposite direction. Two

people start crossing river from opposite sides and there is single stepping stone and

meet in the middle.

4. A Simple Resource deadlock

In the below diagram, Process 1 is holding Resource 1 and waiting for resource 2 which is

acquired by process 2, and process 2 is waiting for resource 1.

LNCT GROUP OF COLLEGES

Four Necessary Conditions for Deadlock:

i. Mutual Exclusion: One or more than one resource are non-sharable (Only one process

can use at a time)

ii. Hold and Wait: A process is holding at least one resource and waiting for resources.

iii. No Preemption: A resource cannot be taken from a process unless the process releases

the resource.

iv. Circular Wait: Each process holds one or more resources that are requested by the

next process in the chain.

Deadlock Prevention : Deadlock prevention ensure that at least one of the necessary

conditions (Mutual exclusion, hold and wait, no preemption and circular wait) does not hold

true.

i. Denying the Mutual Exclusion Condition

ii. Denying the “Hold and Wait “ Condition

iii. Denying the “No-Preemption” Condition

iv. Denying the “Circular Wait” Condition

Safe and Unsafe State:

Safe State, is when there is no chance of deadlock occuring, while unsafe state doesn't mean

a deadlock has occurred yet, but means that a deadlock could happen.

A state is safe if the system can allocate all resources requested by all processes (up to their

stated maximums) without entering a deadlock state. If a safe sequence does not exist, then

the system is in an unsafe state, which MAY lead to deadlock.

LNCT GROUP OF COLLEGES

Resource Allocation Graph (RAG):

Resource Allocation Graph (RAG) is explained to us what is the state of the system in terms

of processes and resources. Like how many resources are available, how many are allocated

and what is the request of each process. Everything can be represented in terms of the

diagram. One of the advantages of having a diagram is, sometimes it is possible to see a

deadlock directly by using RAG.

We know that any graph contains vertices and edges. In RAG vertices are of two type –

1. Process vertex – Every process will be represented as a process vertex. Generally, the

process will be represented with a circle.

2. Resource vertex – Every resource will be represented as a resource vertex. It is also

two type –

i. Single instance type resource – It represents as a box, inside the box, there

will be one dot. So the number of dots indicate how many instances are

present of each resource type.

ii. Multi-resource instance type resource – It also represents as a box, inside

the box, there will be many dots present.

There are two types of edges in RAG –

1. Assign Edge – If you already assign a resource to a process then it is called Assign edge.

2. Request Edge – It means in future the process might want some resource to complete the

execution, that is called request edge.

LNCT GROUP OF COLLEGES

So, if a process is using a resource, an arrow is drawn from the resource node to the process

node. If a process is requesting a resource, an arrow is drawn from the process node to the

resource node.

Example 1 (Single instances RAG) –

If there is a cycle in the Resource Allocation Graph and each resource in the cycle provides

only one instance, then the processes will be in deadlock. For example, if process P1 holds

resource R1, process P2 holds resource R2 and process P1 is waiting for R2 and process P2 is

waiting for R1, then process P1 and process P2 will be in deadlock.

Example 2 (Multi-instances RAG) –

LNCT GROUP OF COLLEGES

From the above example, it is not possible to say the RAG is in a safe state or in an

unsafe state. So to see the state of this RAG, let’s construct the allocation matrix and request

matrix.

• The total number of processes are three; P1, P2 & P3 and the total number of

resources are two; R1 & R2.

Allocation matrix –

• For constructing the allocation matrix, just go to the resources and see to which

process it is allocated.

• R1 is allocated to P1, therefore write 1 in allocation matrix and similarly, R2 is

allocated to P2 as well as P3 and for the remaining element just write 0.

Request matrix –

• In order to find out the request matrix, you have to go to the process and see the

outgoing edges.

• P1 is requesting resource R2, so write 1 in the matrix and similarly, P2 requesting R1

and for the remaining element write 0.

So now available resource is = (0, 0).

Checking deadlock (safe or not) –

LNCT GROUP OF COLLEGES

So, there is no deadlock in this RAG. Even though there is a cycle, still there is no deadlock.

Therefore in multi-instance resource cycle is not sufficient condition for deadlock.

Above example is the same as the previous example except that, the process P3 requesting for

resource R1.

So the table becomes as shown in below.

LNCT GROUP OF COLLEGES

So,the Available resource is = (0, 0), but requirement are (0, 1), (1, 0) and (1, 0).So you can’t

fulfill any one requirement.Therefore, it is in deadlock.

Therefore, every cycle in a multi-instance resource type graph is not a deadlock, if there has

to be a deadlock, there has to be a cycle.So, in case of RAG with multi-instance resource

type, the cycle is a necessary condition for deadlock, but not sufficient.

Deadlock avoidance:

The Deadlock avoidance algorithm examines the resource allocations so that there can never

be a circular wait condition. The resource allocation state of a system can be defined by the

instances of available and allocated resources, and the maximum instance of the resources

demanded by the processes.

Deadlock avoidance can be done with Banker’s Algorithm.

Banker’s Algorithm:

Banker's algorithm is a deadlock avoidance algorithm. It is named so because this

algorithm is used in banking systems to determine whether a loan can be granted or not.

Bankers’s Algorithm is resource allocation and deadlock avoidance algorithm which test all

the request made by processes for resources, it checks for the safe state, if after granting

request system remains in the safe state it allows the request and if there is no safe state it

doesn’t allow the request made by the process.

Following Data structures are used to implement the Banker’s Algorithm:

Let ‘n’ be the number of processes in the system and ‘m’ be the number of resources types.

Available :

• It is a 1-d array of size ‘m’ indicating the number of available resources of each type.

• Available[j] = k means there are ‘k’ instances of resource type Rj

LNCT GROUP OF COLLEGES

Max :

• It is a 2-d array of size ‘n*m’ that defines the maximum demand of each process in a

system.

• Max[i, j] = k means process Pi may request at most ‘k’ instances of resource type Rj.

Allocation :

• It is a 2-d array of size ‘n*m’ that defines the number of resources of each type

currently allocated to each process.

• Allocation[i, j] = k means process Pi is currently allocated ‘k’ instances of resource

type Rj

Need :

• It is a 2-d array of size ‘n*m’ that indicates the remaining resource need of each

process.

• Need [i, j] = k means process Pi currently need ‘k’ instances of resource type Rj for

its execution.

• Need [i, j] = Max [i, j] – Allocation [i, j]

Allocationi specifies the resources currently allocated to process Pi and Needi specifies the

additional resources that process Pi may still request to complete its task.

Banker’s algorithm consists of Safety algorithm and Resource request algorithm

Safety Algorithm

The algorithm for finding out whether or not a system is in a safe state can be described as

follows:

1) Let Work and Finish be vectors of length ‘m’ and ‘n’ respectively.

Initialize: Work = Available

Finish[i] = false; for i=1, 2, 3, 4….n

2) Find an i such that both

a) Finish[i] = false

b) Needi <= Work

if no such i exists goto step (4)

3) Work = Work + Allocation[i]

Finish[i] = true

goto step (2)

4) if Finish [i] = true for all i

then the system is in a safe state otherwise the system is in unsafe state.

LNCT GROUP OF COLLEGES

Resource-Request Algorithm

Let Requesti be the request array for process Pi. Requesti [j] = k means process Pi wants k

instances of resource type Rj. When a request for resources is made by process Pi, the

following actions are taken:

1) If Requesti <= Needi

Goto step (2) ; otherwise, raise an error condition, since the process has exceeded its

maximum claim.

2) If Requesti <= Available

Goto step (3); otherwise, Pi must wait, since the resources are not available.

3) Have the system pretend to have allocated the requested resources to process Pi by

modifying the state as

follows:

Available = Available – Requesti

Allocationi = Allocationi + Requesti

Needi = Needi– Requesti

This step is done because the system needs to assume that resources have been allocated. So

there will be less resources available after allocation. The number of allocated instances will

increase. The need of the resources by the process will reduce. That's what is represented by

the above three operations.

After completing the above three steps, check if the system is in safe state by applying the

safety algorithm. If it is in safe state, proceed to allocate the requested resources. Else, the

process has to wait longer.

Example:

Considering a system with five processes P0 through P4 and three resources of type A, B, C.

Resource type A has 10 instances, B has 5 instances and type C has 7 instances. Suppose at

time t0 following snapshot of the system has been taken:

Answer the following:

1. What will be the content of Need Matrix?

LNCT GROUP OF COLLEGES

Answer:-

2. Is the system in a safe state? If Yes, then what is the safe sequence?

Answer :-

3. What will happen if process P1 requests one additional instance of resource

type A and two instances of resource type C?

Answer:-

LNCT GROUP OF COLLEGES

We must determine whether this new system state is safe. To do so, we again execute Safety

algorithm on the above data structures.

Starvation: Starvation is the problem that occurs when high priority processes keep

executing and low priority processes get blocked for indefinite time.

Difference between Deadlock and Starvation:

S.NO Deadlock Starvation

1. All processes keep waiting for each High priority processes keep

LNCT GROUP OF COLLEGES

other to complete and none get

executed

executing and low priority processes

are blocked

2. Resources are blocked by the processes
Resources are continuously utilized

by high priority processes

3.

Necessary conditions Mutual

Exclusion, Hold and Wait, No

preemption, Circular Wait

Priorities are assigned to the

processes

4. Also known as Circular wait Also know as lived lock

5.
It can be prevented by avoiding the

necessary conditions for deadlock
It can be prevented by Aging

Aging :

Aging is a technique of gradually increasing the priority of processes that wait in the system

for a long time. For example, if priority range from 127(low) to 0(high), we could increase

the priority of a waiting process by 1 Every 15 minutes.

Livelock occurs when two or more processes continually repeat the same interaction in

response to changes in the other processes without doing any useful work. These processes

are not in the waiting state, and they are running concurrently. This is different from a

deadlock because in a deadlock all processes are in the waiting state.

References –

1. A. Silberschatz, P. Galvin, G. Gagne, “Operating Systems Concepts (8th Edition)”, Wiley

India Pvt. Ltd.

2. Internet.

3. H.M. Deitel, “Operating System”.

https://www.amazon.com/Operating-System-Concepts-Abraham-Silberschatz/dp/0470128720

