

Semester

VI

Subject Code

CS603 (C)

Subject Name

Compiler Design

Unit-5

Topic: Directed Acyclic Graph(DAG)

As Per

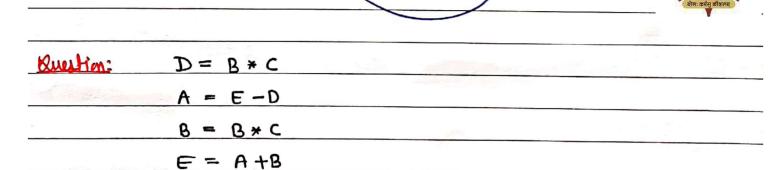
RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

(www.rgpv.ac.in)

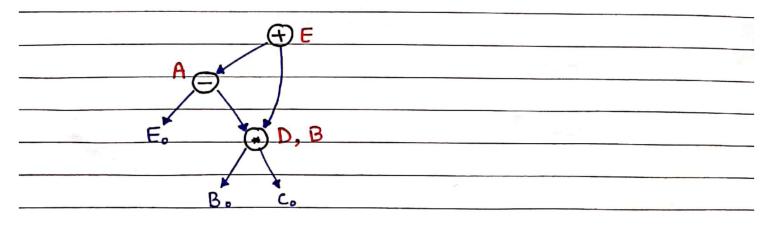
New Scheme Based on AICTE Flexible Curricula Computer Science and Engineering

Mr Sandeep Wadekar

Assistant Professor
Department of Computer Science and Engineering
SAGAR INSTITUTE OF RESEARCH AND TECHNOLOGY BHOPAL



	DAG (DIRECTED ACYCLIC GRAPH) - It is used to apply
	transformation on the
	basic block. DAG is constructed from three address code of
_	a basic block.
•	It is a program flow graph by which we can easily check optimization possibilities over any other
•	In DAG we supresent a control flow observature in following steps -
9)	For each basic block, operator must be in root node inside the circle.
b)	Operands on operator are connected with root node
	with directed edges downwards direction.
٥	Result of operation is stored at root node outside the circle.
(۵	If any value modify itself in between basic block
	Statement then for further reference we take newly
	modified value and the previous value is marked with
	initial marker o. 1, n.
e)	In case of common sub-expression we write the result
	at same rootrade outside the circle, separated.



Question:	Construct	the DAG for.	the following basic	Plock-
	3	q:= b+c		
		b:= c+d		
		C:= b+c		
Jeles		d:= c+d		
Solution:				
			G	` .
			(+	d
			(+)	
		-		

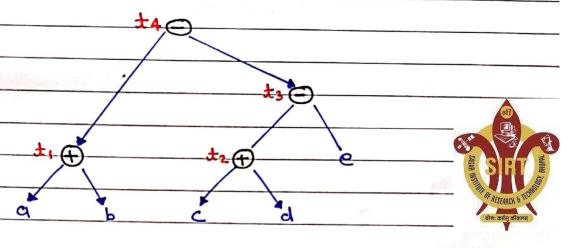
60

Solution:

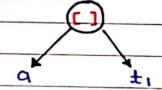
AND SIRT OF THE PROPERTY OF TH

SAGAR INSTITUTE OF RESEARCH AND TECHNOLOGY BHOPAL

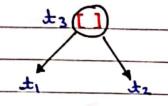
[www.sirtbhopal.ac.in]

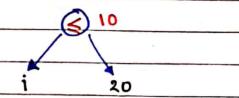

Question: +1:= a+b

t2:= C+d


t3:= t2-e

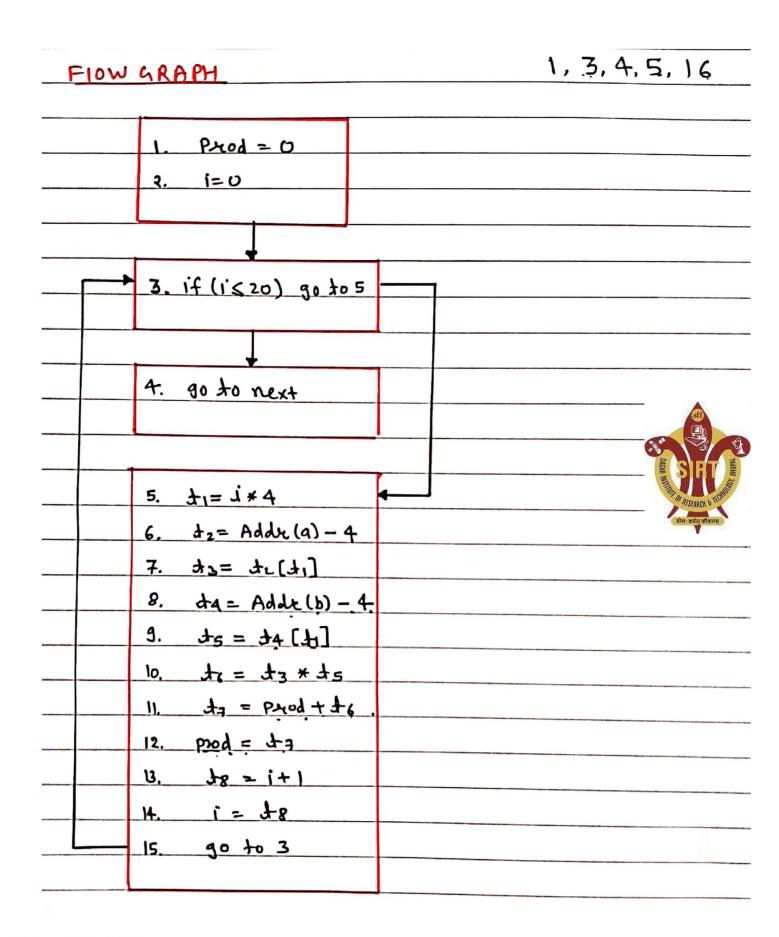
t4:= +1-+3


Solution:

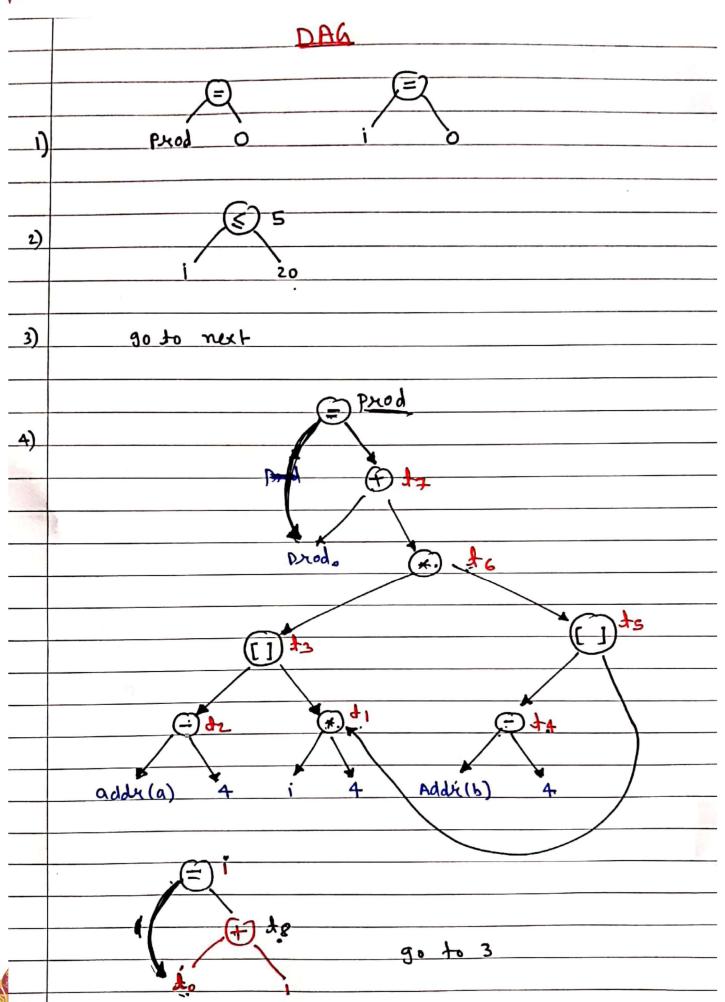

Rustin: a [t1]

Duestin: +3= +2[+1]

Question: if (i≤20) go to 10



a)	Construct DAG of the code-
,	{
	Prod = 0
	for $(i=0, i \le 20, i++)$
	prod = prod + a[i] * b(i)
	3
2017	Three Address code-
	1. Prod = 0
	a. j=0
	3. if (i \(20) guto 5
	4. go to next
	5. di= i * 4
	6. $t_2 = Addr(a) - 4$
	$7. t_3 = t_2[t_1]$
	8. dq= Addr(b)-4
	9. t== t+[t1]
	10. to= t3 + t5
	11. ty = prod + +6
	12. prod = +7
is .	3. 48 = i+1
	H. i = ±8
	15. go to 3
	<u>leader:</u>
	1, 3,4,5, 16
	•


Mr Sandeep Wadekar

