Analysis of two-hinged arch

Introduction

Mainly three types of arches are used in practice: three-hinged, two-hinged and
hingeless arches. In the early part of the nineteenth century, three-hinged arches
were commonly used for the long span structures as the analysis of such arches
could be done with confidence. However, with the development in structural
analysis, for long span structures starting from late nineteenth century engineers
adopted two-hinged and hingeless arches. Two-hinged arch is the statically
indeterminate structure to degree one. Usually, the horizontal reaction is treated
as the redundant and is evaluated by the method of least work. In this lesson, the
analysis of two-hinged arches is discussed and few problems are solved to
illustrate the procedure for calculating the internal forces.

Analysis of two-hinged arch
A typical two-hinged arch is shown in Fig. 33.1a. In the case of two-hinged arch, we
have four unknown reactions, but there are only three equations of equilibrium

available. Hence,Pthe degree of statical indeterminacy is one for two hinged arch.
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Fig. 33.1a Two - hinged arch.

I Fig. 33.1b

The fourth equation is written considering deformation of the arch. The unknown
redundant reaction is calculated by noting that the horizontal displacement of hinge »
HB is zero. In general the horizontal reaction in the two hinged arch is evaluated by



straightforward application of the theorem of least work (see module 1, lesson 4),
which states that the partial derivative of the strain energy of a statically
indeterminate structure with respect to statically indeterminate action should vanish.
Hence to obtain, horizontal reaction, one must develop an expression for strain
energy. Typically, any section of the arch (vide Fig 33.1b) is subjected to shear
forceV , bending moment M and the axial compression . The strain energy due to
bending is calculated from the following expression.

U, = ds (33.1)

The above expression is similar to the one used in the case of straight beams.
However, in this case, the integration needs to be evaluated along the curved
arch length. In the above equation, s is the length of the centerline of the arch, 7
is the moment of inertia of the arch cross section, £ is the Young's modulus of
the arch material. The strain energy due to shear is small as compared to the
strain energy due to bending and is usually neglected in the analysis. In the case
of flat arches, the strain energy due to axial compression can be appreciable and
is given by,

U, = [——ds (33.2)

The total strain energy of the arch is given by,
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Now, according to the principle of least work
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i; =0, where & is chosen as the redundant reaction.
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Solving equation 33.4, the horizontal reaction & is evaluated.



EDDY’S THEOREM
Consider a section at P distant x from A, of an arch, showmn
in Fig. 16'3. Let the other tn—urdiu_mu of P be p. For the given
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Fig. 1673,

system of loads, the linear arch can be constructed (if i is known).
Since funicular polygon represents the bending moment diagram to
ne scale, the vertical intercept P, P, at the section P will give the
beaJding moment doe to external load system. IF the arch is drawn
vio.a scale of L cm=nm. load diagram is plotted to ascale | cm=g
ﬁ and if the distance of pole @ from the load line is r, the scale of
hgndmg moment diagram will be 1 cm=p.g.r. N-m.
~ Now, theoretically, the B.M. at P is given by
' Mp=—V,x+W,(x-a)+ Hy
: ==py -+ Hy
where  px=—F,x1tW,(x—a)
=Usual bending moment at a section due to ioad
system on a simply supported beam.
From Fig. 163, we have,

.%"f;_j:_— - HBx=—{(P,P,) xscale of B.M. diagram

; =—PP, (p.q.1)
and  Hy=(PP,) > scale of B.M. diagram

‘ =PP.p.q.r.)

~ Hence Mp=tx-+ Hy=—P Py(p.q.r.)+PPp.q.r)
=--(PP,}p.q.r)

: Hence the ordinate between the linear arch and the actual
arch gives the bending moment. This is known as Eddy’s thcorem
and may be stated as below : '

Y. ““The bending moment at any section of an arch is equal to the
-verhca! mtercepr between the linear arch and the centre line of the

actgzal arc
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Example 33.1

A semicircular two hinged arch of constant cross section is subjected to a
concentrated load as shown in Fig 33.4a. Calculate reactions of the arch and draw
bending moment diagram.

Solution:
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Fig. 33.4a.
Taking moment of all forces about hinge B leads to,
R =222 _293 3 1N (D
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Fig. 33.4b.



From Fig. 33.4b,
¥ =Rsinf
x=R(l-cos8)
ds=Rd8

13.267

tan 8, = =0, =62.18°=7/, cosrad

Now, the horizontal reaction & may be calculated by the following expression,

[M,5 ds
H="2

— (3)
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Now A4, the bending moment at any cross section of the arch when one of the
hinges is replaced by a roller support is given by,

My=R,x=R, R(l-cos@)

and
M, =R, R(l- cos#) —40(x —8)

=R, R(l—cosf)—40{R(1 - cosf) -8} 6. <6<

Integrating the numerator in equation (3),

6,

ﬂfo‘.ds—JR R (1*;059)31116d9+|[R R(l—cos8)—40{R(1 —cos&) -8} |Rsin & RJE
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=R, VS j(l—c059)311119(f19+R J-[R R(l—cos@)sinf —40{R(1—cosf)sinf —8sind} |d &
x/3895

x/2895

=R R’[-cos o] Lt R:[[Rm_ R(—cos8) ]r;gj— [40R(~cos ) ]X:;; [40 > 8(=cos®) ]X:S ]

= 0.533R_R® + R*[[1.4667R,, R]-[40 R(1.4667)]+ [40 x8(1.4667) ||

=52761.00+225(645.275—-410.676) =105545.775

(5)
The value of denominator in equation (3), after integration is,
[ = [(Rsin6)’RdE
0 0 . . (6)
=& & Jro ==& |— |—5301 46
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Hence, qhe horizontal thrust at the support is,

105545775

=19.90 kN
5301.46

(7)



Bending moment diagram
Bending moment M at any cross section of the arch is given by,

Af = Af, — FF

—R_ R(l—cos&)— FHRsin& D=6 =6, (8)
— 430 .05(1 — cos &) — 298_Ssin &
Af = 439 95(1 —cos &) — 298 Ssin & — 40(15(1 — cos &) — 8) 6 == (9

Using equations (&) and (9), bending moment at any angle ¢ can be computed.
The bending moment diagram is shown in Fig. 33.4c.
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Fig. 33.4c Bending moment diagram

Example 33.2
A two hinged parabolic arch of constant cross section has a span of 60m and a

rise of 10m. It is subjected to loading as shown in Fig.33.5a. Calculate reactions
of the arch if the temperature of the arch is raised by 40° C. Assume co-efficient

of thermal expansion as a = 12X10+s/° C.
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Fig. 33.5



Taking A as the origin, the equation of two hinged parabolic arch may be written
as,

2 10 .
== ——X" 1
¥=3 30° (1)

The given problem is solved in two steps. In the first step calculate the horizontal
reaction due to load 40 kN applied at . In the next step calculate the horizontal
reaction due to rise in temperature. Adding both, one gets the horizontal reaction
at the hinges due to combined external loading and temperature change. The
horizontal reaction due to 40 kN load may be calculated by the following equation,

JALor ds
I G (2a})

ner: s
]
For temperature loading ., horizontal reaction is given by,

mH,—_aLT (2b)
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Where L is the span of the arch.
For 40 &V load,
= 10 =0
fAd,rds = [ R, xapax+ [[R.x—40(x —100]wax (3)
[~ o L
Please note that in the abowve equaticn, the integrations are carmmied out alomng the
x-axis Instead of the curved arch axis. The armor introduced by this change in the
wvariables in the case of flat arches is negligible. Using equation (1), the abowve
equation (3) can be easily evaluated.

The wertical reaction 4 is calculated by taking moment of all forces about 5 .
Hence,

=%[40)—c S0]=33.33 KN

R, —6.67 KN.

MNow consider the equation (3),

i""f "ff’f—ll?'i33 33 xS x gt 1'330'1'—?[(33 333 — 40(x —10)](5 x — ok x* Jax
1< 0. ] - 3 302 - o . - B 3 30°
— 6480.76 + 69404 00 — 74885 _75 (4)
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Hence, the hornzontal reaction due to applied mechanical loads alone 1s given by,

[ 2oy ax 7S8BES5_ TS
- -2 >3 71 BN (6

i, =
I200
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0

The horizontal reaction due 1o rise in temperature s calculated by equation (2b),

12107 >« 60 =40 _ EF <1210 > 60 =40
3200, _
o 3200

Taking & — 200 Dt and 7 =0.0333m"*

B, =

A, =59 034 KN (7

Hence the total horizontal thmast & = &, + &, =83.65 kI

Wehen the arch shape is more complicated, the integrations f
-
are accomplished numerically. For this purpose, divide the arch span in to a2
equals divisions. Length of each division is represented by (As), (vide Fig. .33 . 5b).
At the midpoint of each division calculate the ordinate 3, by using the
>
%x—;c;): x? . The abowve integrals are approximated as,
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My, |1

i ds = i (8)

S (M), 3, (45),

O P

5 2 .
[Lds=—>(),(as), (9)
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The complete computation for the above problem for the case of external loading

is shown in the following table.
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Fig. 33.5(b)

Table 1. Mumerical integration of equations (8) and (9)

Segme Horizontal Cormespond Moment at (AL ), 2, CAS), | (3,7 (AS),
nit distance x ing v, that )
Mo Measured (m) Point (AL ),
1 3 1.9 99.99 11359.886 21.66
2 ] 5.1 299.97 9175.082 156.06
] 15 7.5 299.95 13459775 337.5
4 21 9.1 259.93 14152.18 496.86
] a7 9.9 219.91 13062 65 588.06
B 33 9.9 179.89 10685.47 588.06
i 39 9.1 139.87 7B636.902 496_56
(5] 45 7.5 99.85 4493 .25 3375
9 a1 5.1 59.83 1830.798 156.08
10 a7 1.9 19.81 225.834 21.66
D 759438 33003
i
_ > (A, v, (As) _ 759438 _ 2373 KN (10)

0 (), 32003
This compares well with the horizontal reaction computed from the exact
integration.

Summary

Two-hinged arch is the statically indeterminate structure to degree one. Usually, the
horizontal reaction is treated as the redundant and is evaluated by the method of least work.
Towards this end, the strain energy stored in the two hinged arch during deformation is given.
The reactions developed due to thermal loadings are discussed. Finally, a few numerical
examples are solved to illustrate the procedure.



