New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

CS601 Machine Learning

COURSE OUTCOMES:

After Completing the course student should be able to:

- 1. Apply knowledge of computing and mathematics to machine learning problems, models and algorithms;
- 2. Analyze a problem and identify the computing requirements appropriate for its solution;
- 3. Design, implement, and evaluate an algorithm to meet desired needs; and
- 4. Apply mathematical foundations, algorithmic principles, and computer science theory to the modeling and design of computer-based systems in a way that demonstrates comprehension of the trade-offs involved in design choices.

COURSE CONTENTS:

THEOTY:

Unit –I

Introduction to machine learning, scope and limitations, regression, probability, statistics and linear algebra for machine learning, convex optimization, data visualization, hypothesis function and testing, data distributions, data preprocessing, data augmentation, normalizing data sets, machine learning models, supervised and unsupervised learning.

Unit –II

Linearity vs non linearity, activation functions like sigmoid, ReLU, etc., weights and bias, loss function, gradient descent, multilayer network, backpropagation, weight initialization, training, testing, unstable gradient problem, auto encoders, batch normalization, dropout, L1 and L2 regularization, momentum, tuning hyper parameters,

Unit –III

Convolutional neural network, flattening, subsampling, padding, stride, convolution layer, pooling layer, loss layer, dance layer 1x1 convolution, inception network, input channels, transfer learning, one shot learning, dimension reductions, implementation of CNN like tensor flow, keras etc.

Unit –IV

Recurrent neural network, Long short-term memory, gated recurrent unit, translation, beam search and width, Bleu score, attention model, Reinforcement Learning, RL-framework, MDP, Bellman equations, Value Iteration and Policy Iteration, Actor-critic model, Q-learning, SARSA

Unit –V

Support Vector Machines, Bayesian learning, application of machine learning in computer vision, speech processing, natural language processing etc, Case Study: ImageNet Competition

TEXT BOOKS RECOMMENDED:

- 1. Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer-Verlag New York Inc., 2nd Edition, 2011.
- 2. Tom M. Mitchell, "Machine Learning", McGraw Hill Education, First edition, 2017.
- **3.** Ian Goodfellow and Yoshua Bengio and Aaron Courville, "Deep Learning", MIT Press, 2016

REFERENCE BOOKS:

- 1. Aurelien Geon, "Hands-On Machine Learning with Scikit-Learn and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems", Shroff/O'Reilly; First edition (2017).
- 2. Francois Chollet, "Deep Learning with Python", Manning Publications, 1 edition (10 January 2018).
- 3. Andreas Muller, "Introduction to Machine Learning with Python: A Guide for Data Scientists", Shroff/O'Reilly; First edition (2016).
- **4.** Russell, S. and Norvig, N. "Artificial Intelligence: A Modern Approach", Prentice Hall Series in Artificial Intelligence. 2003.

PRACTICAL:

Different problems to be framed to enable students to understand the concept learnt and get hands-on on various tools and software related to the subject. Such assignments are to be framed for ten to twelve lab sessions.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

CS602 Computer Networks

Course Outcomes:After completion of the course students will be able to

- 1. Characterize and appreciate computer networks from the view point of components and from the view point of services
- 2. Display good understanding of the flow of a protocol in general and a network protocol in particular
- 3. Model a problem or situation in terms of layering concept and map it to the TCI/IP stack
- 4. Select the most suitable Application Layer protocol (such as HTTP, FTP, SMTP, DNS, Bit torrent) as per the requirements of the network application and work with available tools to demonstrate the working of these protocols.
- 5. Design a Reliable Data Transfer Protocol and incrementally develop solutions for the requirements of Transport Layer
- 6. Describe the essential principles of Network Layers and use IP addressing to create subnets for any specific requirements

Unit –I

Computer Network: Definitions, goals, components, Architecture, Classifications & Types. Layered Architecture: Protocol hierarchy, Design Issues, Interfaces and Services, Connection Oriented & Connectionless Services, Service primitives, Design issues & its functionality. ISO-OSI Reference Model: Principle, Model, Descriptions of various layers and its comparison with TCP/IP. Principals of physical layer: Media, Bandwidth, Data rate and Modulations

Unit-II

Data Link Layer: Need, Services Provided, Framing, Flow Control, Error control. Data Link Layer Protocol: Elementary &Sliding Window protocol: 1-bit, Go-Back-N, Selective Repeat, Hybrid ARQ. Protocol verification: Finite State Machine Models & Petri net models. ARP/RARP/GARP

Unit-III

MAC Sub layer: MAC Addressing, Binary Exponential Back-off (BEB) Algorithm, Distributed Random Access Schemes/Contention Schemes: for Data Services (ALOHA and Slotted-ALOHA), for Local-Area Networks (CSMA, CSMA/CD, CSMA/CA), Collision Free Protocols: Basic Bit Map, BRAP, Binary Count Down, MLMA Limited Contention Protocols: Adaptive Tree Walk, Performance Measuring Metrics. IEEE Standards 802 series & their variant.

Unit-IV

Network Layer: Need, Services Provided , Design issues, Routing algorithms: Least Cost Routing algorithm, Dijkstra's algorithm, Bellman-ford algorithm, Hierarchical Routing, Broadcast Routing, Multicast Routing. IP Addresses, Header format, Packet forwarding, Fragmentation and reassembly, ICMP, Comparative study of IPv4 & IPv6

Unit-V

Transport Layer: Design Issues, UDP: Header Format, Per-Segment Checksum, Carrying Unicast/Multicast Real-Time Traffic, TCP: Connection Management, Reliability of Data Transfers, TCP Flow Control, TCP Congestion Control, TCP Header Format, TCP Timer Management.Application Layer: WWW and HTTP, FTP, SSH, Email (SMTP, MIME, IMAP), DNS, Network Management (SNMP).

References:

1. Andrew S. Tanenbaum, David J. Wetherall, "Computer Networks" Pearson Education.

2 Douglas E Comer, "Internetworking WithTcp/Ip Principles, Protocols, And Architecture - Volume I" 6th Edition,Pearson Education

3.DimitriBertsekas, Robert Gallager, "Data Networks", PHI Publication, Second Edition.

4.KavehPahlavan, Prashant Krishnamurthy, "Networking Fundamentals", Wiley Publication.

5.Uyless Black, "Computer Networks", PHI Publication, Second Edition.

6.Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill.

List of Experiments:

1. Study of Different Type of LAN& Network Equipments.

2. Study and Verification of standard Network topologies i.e. Star, Bus, Ring etc.

3. LAN installations and Configurations.

4. Write a program to implement various types of error correcting techniques.

5. Write a program to Implement various types of framing methods.

6. Study of Tool Command Language (TCL).

7. Study and Installation of Standard Network Simulator: N.S-2, N.S3.OpNet, QualNetetc .

8. Study & Installation of ONE (Opportunistic Network Environment) Simulator for High Mobility Networks .

9. Configure 802.11 WLAN.

10. Implement &Simulate various types of routing algorithm.

11. Study & Simulation of MAC Protocols like Aloha, CSMA, CSMA/CD and CSMA/CA using Standard Network Simulators.

12. Study of Application layer protocols-DNS, HTTP, HTTPS, FTP and TelNet.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

Departmental Elective - CS603 (A) Advanced Computer Architecture (ACA)

Course Outcomes: After completion of the course students will be able to

1. Discuss the classes of computers, and new trends and developments in computer architecture

2. Study advanced performance enhancement techniques such as pipelines ,dynamic scheduling branch predictions, caches

3. Compare and contrast the modern computer architectures such as RISC, Scalar, and multi CPU systems

4. Critically evaluate the performance of different CPU architecture

5. Improve the performance of applications running on different CPU architectures.

6. Develop applications for high performance computing systems

Unit-I

Flynn's Classification, System Attributes to Performance, Parallel computer models -Multiprocessors and multicomputers, Multivector and SIMD Computers. Data and resource dependences, Hardware and software parallelism, Program partitioning and scheduling, Grain size and latency, Control flow, data flow and Demand driven mechanisms. Static interconnection networks, Dynamic interconnection Networks: Bus Systems, Crossbar Switch, Multiport Memory, Multistage and Combining Networks

Unit-II

Instruction set architecture, CISC Scalar Processors, RISC Scalar Processors, VLIW architecture, Memory Hierarchy, Inclusion, Coherence and Locality, Memory capacity planning. Interleaved memory organization-memory interleaving, pipelined memory access, Bandwidth and Fault Tolerance. Backplane Bus System :Backplane bus specification, Addressing and timing protocols, Arbitration transaction and interrupt.

Unit-III

Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Mechanisms for instruction pipelining, pipeline hazards, Dynamic instruction scheduling -score boarding and Tomosulo's algorithm, Branch handling techniques, Arithmetic Pipeline Design, Static arithmetic pipeline, Multifunctional arithmetic pipelines. Superscalar pipeline design, Super pipeline processor design.

Unit-IV

Cache coherence, Snoopy protocols, Directory based protocols. Message routing schemes in multicomputer network, deadlock and virtual channel. Vector Processing Principles, Vector instruction types, Vector-access memory schemes. Vector supercomputer architecture, SIMD organization: distributed memory model and shared memory model. Principles of Multithreading: Multithreading Issues and Solutions, Multiple-Context Processors

Unit-V

Parallel Programming Models, Shared-Variable Model, Message-Passing Model, Data-Parallel Model, Object-Oriented Model, Functional and Logic Models, Parallel Languages and Compilers, Language Features for Parallelism, Parallel Programming Environment, Software Tools and Environments.

Suggested Books:

- 1. Kai Hwang, "Advanced computer architecture", TMH.
- 2. J.P.Hayes, "computer Architecture and organization"; MGH.
- 3. V.Rajaranam & C.S.R.Murthy, "Parallel computer"; PHI Learning.
- 4. Kain,"Advance Computer Architecture: -A System Design Approach", PHI Learning
- 5. M.J Flynn, "Computer Architecture, Pipelined and Parallel Processor Design"; Narosa Publishing.
- 6. Hwang and Briggs, "Computer Architecture and Parallel Processing"; MGH.
- 7. David E. Callav & Jaswinder Pal Singh Marge Kaufmann"Advance Computer Architecture", EIS India.
- 8. Sajjan G. Shiva, Taylar & Francis, "Advance Computer Architecture

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

Departmental Elective - CS603 (B) Computer Graphics & Visualization

Unit-I Introduction to Raster Scan displays, Pixels, Frame buffer, Vector & Character generation, Random Scan systems, Display devices, Scan Conversion techniques, Line Drawing algorithms: simple DDA, Bresenham's Algorithm, Circle Drawing Algorithms: Midpoint Circle drawing and Bresenham's Algorithm, Polygon fill algorithm: Boundary-fill and Flood-fill algorithms.

Unit-II 2-D Transformation: Translation, Rotation, Scaling, Shearing, Reflection. Inverse Transformation, Homogeneous coordinate system, Matrices Transformation, Composite Transformation. Windowing & Clipping: World Coordinate System, Screen Coordinate System, Viewing Transformation, Line Clipping & Polygon Clipping Algorithms

Unit-III 3-D Transformations: Translation, Rotation and Scaling. Parallel & Perspective Projection: Types of Parallel & Perspective Projection, Hidden Surface elimination: Depth comparison, Back face detection algorithm, Painter's Algorithm, Z-Buffer Algorithm. Curve generation, Bezier and B-spline methods. Basic Illumination Model: Diffuse reflection, Specular reflection, Phong Shading, Gouraud shading, Ray Tracing, Color models like RGB, YIQ, CMY, HSV.

Unit-IV Visualization: Visualization of 2D/3D scalar fields: color mapping, ISO surfaces. Direct volume data rendering: ray-casting, transfer functions, segmentation. Visualization of Vector fields and flow data, Time-varying data, High-dimensional data: dimension reduction, parallel coordinates, Non-spatial data: multi-variate, tree/graph structured, text Perceptual and cognitive foundations, Evaluation of visualization methods, Applications of visualization, Basic Animation Techniques like traditional, key framing

Unit –V Multimedia :Basic of multimedia, application of Multimedia, Text-Types, Unicode Standard ,text Compression, Text file formats, Audio Components, Digital Audio, Digital Audio processing, Sound cards, Audio file formats ,Audio Processing software ,Video-Video color spaces, Digital Video, Digital Video processing, Video file formats. Animation: Uses of Animation, Principles of Animation, Computer based animation, 3D Animation, Animation file formats, Animation software,Special Effects in animation, Storyboarding for Animation, Compression: Lossless/Lossy Compression techniques, Image, Audio & Video Compression, MPEG Standards ,Multimedia Architecture, Multimedia databases.

Recommended Text:

1. Donald Hearn and M.P. Becker "Computer Graphics" Pearson Pub.

2. Foley, Van Dam, Feiner, Hughes, "Computer Graphics: Principles and Practice" Addison-Wesley

- 3. Rogers, "Procedural Elements of Computer Graphics", Tata McGraw Hill
- 4. Parekh "Principles of Multimedia" Tata McGraw Hill
- 5. Maurya, "Computer Graphics with Virtual Reality System", Wiley India
- 6. Pakhira,"Computer Graphics ,Multimedia & Animation",PHI learning
- 7. Andleigh, Thakral, "Multimedia System Design "PHI Learning
- 8. Khalid Sayood, "Introduction to Data Compression", Morgan Kaufmann

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

Departmental Elective - CS603 (C) Compiler Design

Unit-I Introduction to compiling & Lexical Analysis

Introduction of Compiler, Major data Structure in compiler, types of Compiler, Front-end and Back-end of compiler, Compiler structure: analysis-synthesis model of compilation, various phases of a compiler, Lexical analysis: Input buffering, Specification & Recognition of Tokens, Design of a Lexical Analyzer Generator, LEX.

Unit-II Syntax Analysis & Syntax Directed Translation

Syntax analysis: CFGs, Top down parsing, Brute force approach, recursive descent parsing, transformation on the grammars, predictive parsing, bottom up parsing, operator precedence parsing, LR parsers (SLR,LALR, LR),Parser generation. Syntax directed definitions: Construction of Syntax trees, Bottom up evaluation of S-attributed definition, L-attribute definition, Top down translation, Bottom Up evaluation of inherited attributes Recursive Evaluation, Analysis of Syntax directed definition.

Unit-III Type Checking & Run Time Environment

Type checking: type system, specification of simple type checker, equivalence of expression, types, type conversion, overloading of functions and operations, polymorphic functions. Run time Environment: storage organization, Storage allocation strategies, parameter passing, dynamic storage allocation, Symbol table, Error Detection & Recovery, Ad-Hoc and Systematic Methods.

Unit –IV Code Generation

Intermediate code generation: Declarations, Assignment statements, Boolean expressions, Case statements, Back patching, Procedure calls Code Generation: Issues in the design of code generator, Basic block and flow graphs, Register allocation and assignment, DAG representation of basic blocks, peephole optimization, generating code from DAG.

Unit –V Code Optimization

Introduction to Code optimization: sources of optimization of basic blocks, loops in flow graphs, dead code elimination, loop optimization, Introduction to global data flow analysis, Code Improving transformations, Data flow analysis of structure flow graph Symbolic debugging of optimized code.

References:

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools , Pearson Education

- 2 Raghavan, Compiler Design, TMH Pub.
- 3. Louden. Compiler Construction: Principles and Practice, Cengage Learning
- 4. A. C. Holub. Compiler Design in C, Prentice-Hall Inc., 1993.
- 5. Mak, writing compiler & Interpreters, Willey Pub.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

Open Elective - CS604 (A) Knowledge Management

OBJECTIVES:The student should be made to:

- Learn the Evolution of Knowledge management.
- Be familiar with tools.
- Be exposed to Applications.
- Be familiar with some case studies.

UNIT I : INTRODUCTION

Introduction: An Introduction to Knowledge Management – The foundations of knowledge management- including cultural issues- technology applications organizational concepts and processes- management aspects- and decision support systems. The Evolution of Knowledge management: From Information Management to Knowledge Management – Key Challenges Facing the Evolution of Knowledge Management – Ethics for Knowledge Management.

UNIT II : CREATING THE CULTURE OF LEARNING AND KNOWLEDGE SHARING

Organization and Knowledge Management – Building the Learning Organization. Knowledge Markets: Cooperation among Distributed Technical Specialists – Tacit Knowledge and Quality Assurance.

UNIT III : KNOWLEDGE MANAGEMENT-THE TOOLS

Telecommunications and Networks in Knowledge Management – Internet Search Engines and Knowledge Management – Information Technology in Support of Knowledge Management – Knowledge Management and Vocabulary Control – Information Mapping in Information Retrieval – Information Coding in the Internet Environment – Repackaging Information.

UNIT IV : KNOWLEDGE MANAGEMENT-APPLICATION

Components of a Knowledge Strategy – Case Studies (From Library to Knowledge Center, Knowledge Management in the Health Sciences, Knowledge Management in Developing Countries).

UNIT V : FUTURE TRENDS AND CASE STUDIES

Advanced topics and case studies in knowledge management – Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan – A case study on Corporate Memories for supporting various aspects in the process life -cycles of an organization.

TEXT BOOK:

• Srikantaiah, T.K., Koenig, M., "Knowledge Management for the Information Professional" Information Today, Inc., 2000.

REFERENCE:

• Nonaka, I., Takeuchi, H., "The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation", Oxford University Press, 1995.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

Open Elective - CS604 (B) Project Management

Course Learning Objectives:

Understand the different activities in software project development i.e, planning, design and management.

Course content:

1. Conventional Software Management.

Evolution of software economics. Improving software economics: reducing product size, software processes, team effectiveness, automation through software environments. Principles of modern software management.

2. Software Management Process

Framework,: Life cycle phases- inception, elaboration, construction and training phase. Artifacts of the process- the artifact sets, management artifacts, engineering artifacts, pragmatics artifacts. Model based software architectures. Workflows of the process. Checkpoints of the process.

3. Software Management Disciplines

Iterative process planning. Project organisations and responsibilities. Process automation. Project control And process instrumentation- core metrics, management indicators, life cycle expections. Process discriminants.

Books

- 1. Software Project management, Walker Royce, Addison Wesley, 1998.
- 2. Project management 2/e ,Maylor.
- 3. Managing the Software Process, Humphrey.
- 4. Managing global software Projects, Ramesh, TMH, 2001.

Course Outcomes:

1. Understanding the evolution and improvement of software economics according to the basic parameters and transition to the modern software management.

2. Learning the objectives, activities and evaluation criteria of the various phases of the life cycle of software management process.

3. Gaining knowledge about the various artifacts, workflows and checkpoints of the software management process and exploring the design concept using model based architecture from technical and management perspective.

4. Develop an understanding of project planning, organization, responsibilities, automation and control of the processes to achieve the desirable results.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

Open Elective - CS604 (C) Rural Technology & Community Development

Unit – I: Rural Management –

Principles and Practices Introduction to Management and Theory of Management B. Planning, Organisation Structure and Design C. Motivation and Leadership D. Management Control and Managerial Decision Making

Unit – II: Human Resource Management for rural India

Nature, Scope of Human Resource Management. F. Human Resource Planning, Recruitment and Selection, Training and Development, Performance Appraisal G. Welfare programme and Fringe benefits, Wage and Salary Administration H. Morale and Productivity, Industrial Relations and Industrial Disputes

Unit-III Management of Rural Financing:

Rural Credit System, Role of Rural Credit in Rural Development. Evolution and Growth of Rural Credit System in India. B: Agricultural Credit, Agricultural Credit Review Committee, Report of different Committees and Commissions, Problems and Prospects. C: Rural Credit to Non-farm Sector, Credit for small and marginal entrepreneurs. D: Role of Government Institutions towards facilitating Rural Credit. Role of Non- Government/ Semi Government / Quasi- Government Institutions. Growth and Present trend of Rural Financing towards Small scale and Cottage Industries.

Unit – IV: Research Methodology:

Concept of Social Research, Traditional Research, Action Research and Participatory Research B: Qualitative Data Construction and Methods of Data Collection C: Techniques of Interview D: Qualitative methods: Sociometry, Case Studies, observation, coding and content analysis

Unit – V: Research Methodology

Collection, Tabulation and Presentation of data B: Measures of Central Tendency, Dispersion, Moments, Skewness and Kurtosis, Correlation and Regression: Sampling Theory and Test of Significance

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

CS605 Data Analytics Lab

Course Outcomes: After completion of the course students should be able to

1. Understand the basic of data analytics using concepts of statistics and probability.

2. Understand the needs of data processing techniques.

3. Implement the data analytics techniques using R, MATLAB and Python.

4. Apply the data analytics techniques in real life applications.

Unit-I

Basics of data analytic framework, data per-processing, Statistics, probability, Probability Distribution, Bayes' Theorem, Central Limit theorem, Data Exploration & preparation, Concepts of Correlation, Regression, Covariance, Outliers, Data visualization.

Unit-II

Introduction to R as a data analytics tool.

Unit -III

Introduction to MATLAB as a data analytics tool.

Unit -IV

Introduction to python as a data analytics tool.

Unit – V

Case studies.

New Scheme Based On AICTE Flexible Curricula

Computer Science and Engineering, VI-Semester

CS606 Skill Development Lab

The primary objective of skill development lab is to impart the set of skills into students, so that they are industry ready.

Course Outcomes: After completion of the course students should be able to

- 1. Understand the basics of software as a product.
- 2. Understand the current requirements of industries.
- 3. Implement the software as a product using different design patterns.
- 4. Apply the software development techniques in real life applications.

Unit – I

Software product life cycle.

Unit – II

Software product development standards.

Unit – III

Design patterns – 1

Unit -IV

Design Patterns – II

Unit – V

Case Study